
Outline
•Introduction to GitLab

•Setting Up GitLab

•Creating and Managing Projects

•Version Control with Git

•Collaboration and Sharing

•CI/CD Pipelines

•Conclusion and Q&A 



Introduction to GitLab
GitLab is a web-based DevOps lifecycle tool that provides a Git repository 

manager with wiki, issue-tracking, and CI/CD pipeline features. 

Key Features: 
• Version Control 

• Continuous Integration/Continuous Deployment (CI/CD) 

• Code Collaboration



Difference between GitLab and GitHub
Both GitLab and GitHub are popular platforms that leverage Git for version control.

GitLab

•Store Your Code

•Work with Others 

•Track Changes

•Automate Tasks

•Manage Projects

•Open Source

•Self-Hosted

GitHub

•Store Your Code

•Work with Others

•Track Changes 

•Showcase Your Work

•Cloud- Hosted



Setting up a GitLab account
To use GitLab, you'll need to create a free account on their platform.

1 Visit GitLab Website

Open your web browser and navigate to the GitLab website 

(gitlab.com).

2 Sign Up

Click on the "Sign up" button and provide your email address, 

username, and password.

3 Verify Email

Check your email inbox for a verification link and click on it to 

activate your account.



Creating a new repository
A repository is a central location where you store your code and track changes.

Log In

Log in to your GitLab account.

New Repository

Navigate to the "Projects" section and click on the "New project" button.

Name and Initialize

Give your repository a descriptive name and select options for visibility (public or private) and 

initialization (with a README file).

Create Repository

Click on the "Create repository" button to create your new repository.



Cloning a repository
Cloning a repository creates a local copy of a remote repository on your 

computer.

Git Clone Command

Use the `git clone` command 

followed by the URL of the 

remote repository to clone it.

Repository 
Directory

The `git clone` command 

creates a directory with the 

same name as the repository 

in your local machine.

Local Copy

You now have a local copy of the repository that you can work with 

independently.



Committing changes to a 
repository
Committing changes saves your changes to the local repository, keeping track of what 

you've modified.

1 Modify Files

Make the desired changes to the files in your local repository.

2 Stage Changes

Use the `git add` command to stage the files you want to commit.

3 Commit Changes

Use the `git commit` command to create a snapshot of your changes 

with a descriptive commit message.



What is Git and why use it?
Git is a version control system that allows you to track changes in your code over time.

1 Track Changes

Git helps you record every change made to your code, enabling 

you to revert back to previous versions if needed.

2 Collaborate Effectively

Git facilitates collaboration by enabling multiple developers to 

work on the same project simultaneously, merging their changes 

seamlessly.

3 Manage Code History

Git provides a comprehensive history of your codebase, allowing 

you to understand how the code evolved and identify the origin of 

specific changes.

4 Prevent Data Loss

Git ensures that your code is backed up and safe, even if your 

computer crashes or you accidentally delete files.



Pushing changes to a remote 
repository
Pushing changes updates the remote repository with the changes you made in your local repository.

Git Push

The `git push` command sends your committed changes from your local repository to the remote repository.

Remote Update

Your changes are reflected in the remote repository, making them available to other collaborators.

Synchronized

Both your local and remote repositories now contain the latest changes, ensuring everyone is working on the 

same codebase.



Collaborating on a project 
using GitLab
GitLab provides tools for seamless collaboration on software projects.

Feature Description

Issue Tracking Create, manage, and track issues, bugs, 

and feature requests.

Merge Requests Propose changes to the main branch 

and collaborate on code reviews.

Branching Create separate branches to work on 

new features or bug fixes without 

affecting the main branch.

Discussion Engage in discussions on issues, merge 

requests, and other project aspects.



Integrating GitLab with Python for climate 
data analysis
GitLab can be seamlessly integrated with Python to streamline your climate data analysis workflow.

API Integration

Use Python libraries to interact with the GitLab API and download 

climate data from repositories.

Data Analysis

Utilize Python libraries like Pandas and NumPy to analyze, process, 

and visualize climate data to gain valuable insights.


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11

