

DATA COLLECTION TECHNIQUES AND BEST PRACTICES

By

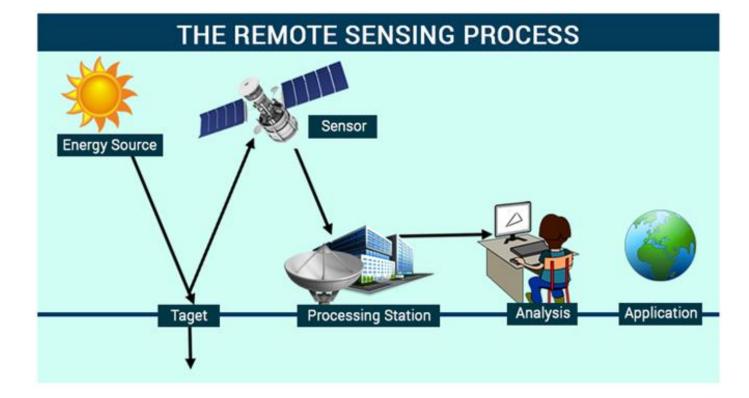
Naomi Kumi, PhD

Email: naomi.kumi@uenr.edu.gh

Tel: 0240238267

School of Geo-Sciences (SoGS)

Department of Atmospheric and Climate Science


UENR, Dormaa Campus

- Climate data collection is a critical aspect of understanding and responding to climate change (why/how?).
- The data collected helps researchers analyse:
- \checkmark weather patterns,
- \checkmark climate trends, and
- \checkmark environmental changes over time.
- This information is vital for making informed decisions about climate policy, mitigation strategies, and adaptation efforts.

1) Remote Sensing Techniques:

- Remote sensing involves collecting data from a distance, typically using satellites or aircraft.
- It provides large-scale, continuous observations of the Earth's atmosphere, land, and oceans.

Source: Google

REMOTE SENSING TECHNIQUES

a) Satellites:

- Geostationary Satellites: Positioned above a fixed point on Earth, they provide real-time data and are useful for monitoring weather patterns and natural disasters.
- Placed in a slot above a particular point on the Earth's surface.

• Polar-Orbiting Satellites: Orbit the Earth from pole to pole, covering the entire globe over time, and are used for detailed observations of climate variables.

REMOTE SENSING TECHNIQUES

Diffraction

Grating

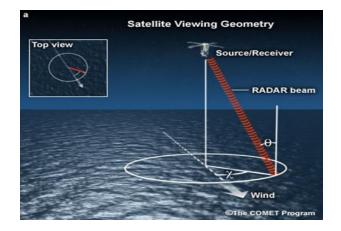
Detector

Slit

Sample

Light

Source


Software

Instruments:

Spectrometers: Measure radiation across various wavelengths to determine atmospheric composition.

Radiometers: Measure emitted radiation, providing data on temperature, humidity, and cloud cover.

Scatterometers: Measure wind speed and direction over oceans by analysing reflected microwave signals.

Applications:

Mirror

Mirror

Monitoring sea surface temperatures, ice cover, vegetation health, and atmospheric gases like CO₂ and CH₄.

REMOTE SENSING TECHNIQUES

b) Drones and Aircraft:

- Usage: Equipped with sensors and cameras, drones and aircraft provide highresolution data and are useful for localized studies.
- Applications: Monitoring land-use changes, glaciers, forest cover, and capturing atmospheric samples.

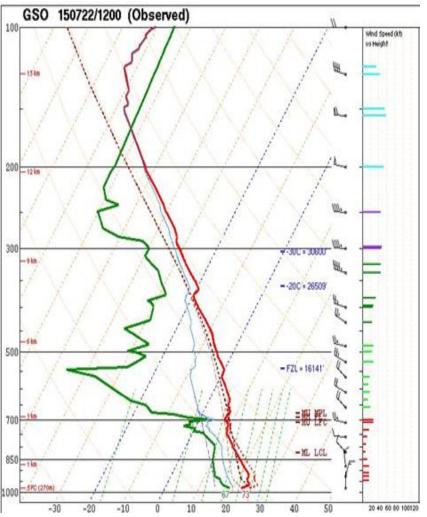
2) Ground-Based Observations:

Ground-based methods provide precise and continuous data from specific locations, complementing remote sensing data.

Source: Google

a) Weather Stations:

- Components: Measure temperature, humidity, wind speed and direction, precipitation, and atmospheric pressure.
- Networks: National Meteorological and Hydrological Services (NMHSs) operate networks of stations worldwide, feeding data into global climate models.

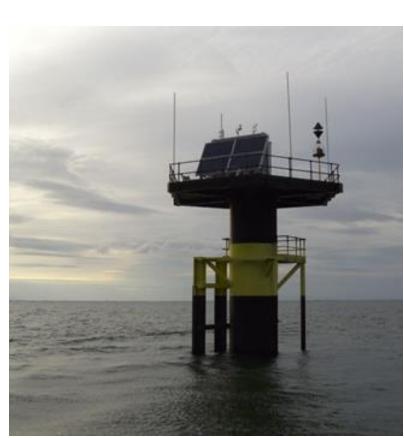


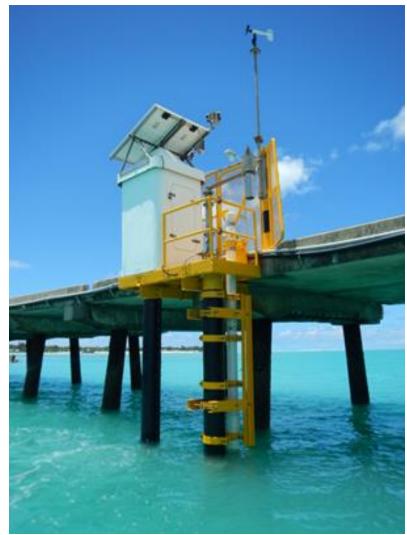
b) Radiosondes and Balloons:

• Function: Released into the atmosphere, these instruments collect vertical profiles of temperature, humidity, and pressure.

• Usage: Essential for weather forecasting and understanding atmospheric conditions.

c) Flux Towers:


 Purpose: Measure exchanges of gases (carbon dioxide, water vapor) between ecosystems and the atmosphere.


 Applications: Assess ecosystem health, carbon sequestration, and climate change impacts.

d) Tide Gauges:

- Function: Measure sea level changes, providing long-term data on rising sea levels due to climate change.
- Applications: Critical for assessing coastal vulnerability and impacts of sea level rise.

3) Paleoclimate Data Collection:

Understanding past climate conditions helps predict future climate scenarios. Paleoclimate data are gathered from natural records that preserve evidence of historical climate conditions.

4) Citizen Science and Crowdsourcing:

Engaging the public in data collection can significantly expand the reach and scope of climate research.

5) Data Integration and Analysis:

Combining diverse data sources is essential for a comprehensive understanding of climate systems.

a) Climate Models:

- ➢ Global Climate Models (GCMs) and Regional Climate Models (RCMs) simulate climate systems and predict future climate conditions based on different scenarios.
- ➤ The outcome of the simulations are used to inform policy decisions, understand climate dynamics, and evaluate mitigation strategies.

- 5) Data Integration and Analysis
- b) Data Assimilation:
- ➢ Integrating observational data with model outputs to improve predictions and reduce uncertainties.
- ➢ Applications: Enhancing weather forecasts, refining climate models, and informing decision-making processes.

BEST PRACTICES IN CLIMATE DATA COLLECTION

- Ensuring the quality, reliability, and accessibility of climate data requires adherence to best practices such as (but not limited to):
- 1) Standardization
- ➢ Implementing standardized methods and protocols for data collection ensures consistency and comparability across studies and regions.

Entities like the World Meteorological Organization (WMO) provide guidelines for data collection standards.

BEST PRACTICES IN CLIMATE DATA COLLECTION

- Ensuring the quality, reliability, and accessibility of climate data requires adherence to best practices such as (but not limited to):
- 2) Calibration and Validation
- ➤ Calibration: Regular calibration of instruments is essential to maintain data accuracy.
- ➤ Validation: Cross-referencing data with other sources or models to ensure reliability and accuracy.
- 3) Data Quality Control
- > what are you supposed to do at this stage?

